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Abstract. Reducible constrained Hamiltonian systems are quantized according to an irreducible
BRST mechanism. Our procedure is based on the construction of an irreducible theory which
is physically equivalent to the original one. The equivalence between the two systems allows
the substitution of the BRST quantization of the reducible theory with the BRST quantization
of the irreducible theory. The general formalism is illustrated in the case of a model involving
Abelian one- and two-form gauge fields.

1. Introduction

It is well known that there are two BRST approaches to the quantization of arbitrary gauge
theories. One of them is based on the Lagrangian formalism [1-6] (known as the antifield
formalism), while the other deals with Hamiltonian aspects [6—11]. Both formulations can
be applied to irreducible, as well as reducible gauge systems. For reducible theories, it is
necessary to introduce ghosts of ghosts and their antifields in order to ensure the nilpotency
of the BRST symmetry. The antifield treatment was extended to constrained Hamiltonian
systems [12, 13], therefore allowing a clearer connection between the Lagrangian and the
Hamiltonian BRST symmetries.

In this paper we give a consistent procedure for quantizing reducible Hamiltonian
systems with first-class constraints following an irreducible BRST mechanism. Although
the idea of replacing a redundant set of first-class constraints by an irreducible one in
a larger phase space is known [6, 14], it has neither been consistently developed nor yet
applied to the quantization of reducible gauge theories. Starting with a finite-stage reducible
Hamiltonian first-class system, we perform the following steps: (i) we transform the original
reducible theory into an irreducible one in a manner that allows the substitution of the BRST
guantization of the reducible system with the BRST quantization of the irreducible theory;
(ii) we quantize the extended action of the irreducible system accordingly the antifield-BRST
formalism. As a consequence, the ghosts of ghosts, as well as their antifields, do not appear
within our formalism. By virtue of this, our method puts the reducible and irreducible
constrained Hamiltonian systems on an equal footing from the BRST formalism point of
view. As far as we know, such an approach has not previously been published, hence our
paper establishes a new result.

The paper is organized in six sections. Section 2 deals with enlarging the initial phase
space of an arbitrary first-stage reducible Hamiltonian system by adding some supplementary
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canonical pairs, and further with constructing an irreducible set of first-class constraints. The
irreducible set is derived in a way that ensures equivalence with the starting first-class set.
In section 3 we establish the physical equivalence between the reducible and irreducible
systems. In this light, the physical observables and also the number of physical degrees
of freedom associated with both theories are shown to coincide. The physical equivalence
permits the replacement of the reducible BRST quantization by the irreducible one. The
guantization of the resulting irreducible first-class Hamiltonian system is then performed on
behalf of an appropriate gauge-fixing fermion. Section 4 generalizes our results from the
previous sections to finite-stage reducible first-class constraints. In section 5 we exemplify
the general theory in the case of a reducible model describing the Stueckelberg coupling
between Abelian one- and two-form gauge fields. Finally, in section 6 we set out our
conclusions.

2. First-stage reducible Hamiltonian theories

In this section we show how one can construct a set of irreducible first-class constraints
starting from a first-stage reducible one. We begin with a system describAddayonical
pairs (¢’, pi), subject to the first-class constraints

Gulq, p) =0 a=1,..., My Q)
which are assumed to be first-stage reducible
ZuglGao =0 Cllzl,...,Ml (2)

and suppose that there are no second-class constraints in the theory. In (2) we used the
strong equality because one can always define the first-stage reducibility functions so as
to have off-shell reducibility. For the sake of simplicity, we assume tgat p;) are
bosonic, but the results can be extended to fermions by introducing some appropriate phases.
We denote the first-class Hamiltonian 18§, such that the gauge algebra is expressed by
[Gao. Gl = C%, Geor [H, Goy) = V™ Gy, Relations (2) indicate that the functioni,

are not all independent. Under these circumstances, we locally split these functions within
the independent and dependent componéhtsand G, respectively:

Gﬁo —
Ga0= ao=l,...,M0—M1 (3)
G,
with
Gay = M,[*Gg, (4)

for some functionsMaf(’, such thatGz, ~ 0 = G, ~ 0. All that is required is to choose
the functionsG,, in such a way that the split can be achieved in principle. With the help
of equations (4) we solve (2) faz® . Accordingly, we find

z% = (M,", —8,™). (5)
Next, we perform a transformation
- Ga,
Go —> Ggy = ( 0°) (6)

with the help of an invertible matriz, :

Gao = Mafo Gbo (7)
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such thatGa0 ~ 0<% G, ~ 0. This matrix permits the representation

s 0
M, = ( ) ®)
Mo —§ b
ay ay
while its inverse coincides with itself:
— bo b
M, =M,". 9)
If one inverts equation (7), one obtains
G = Muoboého (10)
so, on account of (10) and (2), we consequently find
Z% Gay = 2% MG, = 0. (11)

In this way, we can regard
zh = 7% M, (12)

as the reducibility functions af,,. Using equations (5) and (8) it follows thﬁ?g1 is given
by

b, b
z" = (0,8.). (13)
If one splits the free index in (12) inty = (bo, b1) and uses (13), one derives (fay — b1)
a b b
z9 M =50 (14)
hence
rank(Z% M) = My (15)
where
M, = 0 16
a —(3 b1 . ( )

a
Next, we transform the reducible constraints (1) into some irreducible ones. In this
respect, we introduce a canonical p&ir, r,,) associated with every (free index of)
relation (2), on which we impose the constraint

Ty ~ 0. 17)

Obviously, the constraints (1) and (17) are first-class and reducible. The theory based on
these constraints is physically equivalent to that based only on the constraints (1) as the two
systems display the same number of physical degrees of freedom, and, moreover, it can be
shown that they describe the same physical observables. Indgédgeifotes an observable

of the theory with the constraints (1) and (17), then it is also an observable of the original
one. The last statement arises in a simple manner by writing down the equations satisfied
by f, namely,

[/ Gul = 0 [f, 7] ~ 0. (18)

Equations (18) show that does not depend (at least weakly) gh, and, in addition, that

the observables associated with this theory fulfl ¢,,] ~ 0, which are nothing but the
equations verified by the observables corresponding to the original system. The converse
is also valid, i.e. any observable of the original theory satisfies (18) because it does not
depend on(y“t, m,,) and checks by definitionf] G,,] ~ 0.
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Dropping out the trivial part of (6), we construct the irreducible first-class constraints
Gz
= (0) ~0 19)
Tay

such that the momenta,, replace the dependent constraint functions. With the help of (6)
and (16), the constraints (19) can be put in the form

Vao = Gay — M2, ~ 0. (20)
Now, we pass from (20) to the equivalent set of first-class constraints

Vao = M, Vv, (21)
with M,’° the matrix (8). Adopting the notatiod,” = —Ma(f’OMbO”1 and using (10),
from (21) we find the first-class constraints

Vao = Gag + A 7p, ~ 0. (22)

The matrianf1 also verifies (14). Indeed, we have that

Z9 A = —Z% MM, = 7P M, =8, (23)

€1”"do

However, from practical reasons it is useful to weaken the condition (23) by ta4gjfrg
such thatz A = D is invertible, i.e.

rank(D,) = M. (24)

We employ this choice throughout the paper. Moreover, the first-class constraints (22) are
irreducible. Indeed, we have thats, y,, = Daflm,1 is non-vanishing due to (24).

Within the above discussion we supposed that the split of the reducible constraints
into independent and dependent ones can be done in principle, this assumption being
useful for some technical purposes. Indeed, the split form of the original constraints
represents an intermediate step in finally reaching the irreducible constraints (22) where
the initial constraint functions appear in a covariant (not split) form. The derivation
of the constraints (22) based on the above split is still useful in order to outline the
introduction of the intermediate reducible system possessing the constraints (1) and (17),
which subsequently emphasizes in a suggestive manner how the dependent constraints can
be replaced by some new degrees of freedom ensuring the irreducibility. However, the
separation of the reducible constraints can spoil the covariance or destroy the locality of
those relations where it is manifest. In fact, the split hypothesis is not crucial in arriving
at (22) and can be replaced by homological arguments, as follows. It is well known that
the BRST symmetry; associated with a Hamiltonian reducible theory contains two basic
differentials

SR =0r+Dp+--- (25)

wheredg denotes the Koszul-Tate differential af; stands for a model of longitudinal
derivative along the gauge orbits. In the case of first-stage reducible systems, the action of
3g on the original phase-space variables and on the genel@gtsP,,) in the Koszul-Tate
complex reads

(3qu = 0 8Rpi = 0 (26)
SRPa() = _Gao (27)

8R7Da1 =-Z" Pao (28)

ai
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whereP,, and P,, have the antighost number 1, respectively, 2. The antiglBgtsare
required in order to kill the non-trivial co-cycles of antighost number 1:

Pay = Z, P (29)

in the homology of§z. The idea with the help of which we can recover (22) is to redefine
the antighost$,, such that the non-trivial co-cycles of the type (29) vanish identically. If

we succeed in doing this, the co-cycles (29) do not appear anymore, hence the antighosts
P., are no longer necessary such that the theory becomes indeed irreducible. In this light,
we perform the transformation

Pas = Pay = D, Pp, (30)
where D, is chosen such that

z% D=0 D,2Gy, = Gy, (31)
From (27) and (30), (31) we obtain

8Puy = —Go (32)
which subsequently leads to

8(2,Pay) =0 (33)
but with

Z% Pu, = 0. (34)

In (32), (33) we re-denotedlr by § in order to outline that the new theory is irreducible.
If we take

ai

D=5l — 7% D, Al (35)

1 ao

Whereﬁbf1 is the inverse obefl, equations (31) are clearly satisfied. Substituting (35)
in (32) we find that

8(Puy — 2% Dy " AL Pro) = —Gap. (36)

As the co-cycles (34) vanish identically it results that (32) or (36) can be precisely associated
with an irreducible system. In order to derive the form of the irreducible constraints we
consider the new canonical paiss, n,,), with 7, the non-trivial solutions of the equations

D)y, =8 (=2, Py,) - (37)

Equations (37) may have trivial, as well as non-trivial, solutions. Initially, we notice that
7, = 0 (trivial solutions) if and only ifa(—Z”glpbO) = 0. This case corresponds to
the reducible theory with the constraints (1) and (17) (in this situation we obtain the co-
cycles (29)). The non-trivial solutions,, # 0 appear if and only iB(—Z”gleO) # 0 (the
guantities (29) are no longer co-cycles), hence if and only if the theory is irreducible. While
within the split context the momenta,, replace the dependent constraint functions, in the
homological approach they enforce the removal of the co-cycles (29). Expresgifrgm

(37) (in the irreducible case;,, # 0) as

Ty = 8(=Z" Dy Py (38)
and replacing this result in (36) we obtain the relations
8Pay = =Gy — AL by, = —Vao- (39)

The last equations are simply the definitionssain the antighost number 1 antigho®sg,
which are attached to the irreducible system having the constraints (22). In conclusion, the
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first-class constraints (22) can be derived by requiring that the non-trivial co-cycles of the
type (29) vanish identically under the redefinitions (30). For instance, in the case of free
Abelian two-form gauge fields the reducible first-class constraints read as

G? = —20/m; ~ 0. (40)

The model is first-stage redundant, namaf/Gf.z) = 0, with Z' = 3'. The actions of the
reducible Koszul-Tate differential on the antighost number 1 antigtsése given by

(SRP,‘ = 28jnji. (41)
RedefiningP; such that

5 j oo j
Pi—P=|6§"———|P,=D,"P; (42)
i A J i J
from (41) we find
;07 ;
1) <P, - TPJ> = 23]7'L'j,- (43)

where A = 3,9*. Introducing the canonical paik, 7) playing the role of the variables
(y*, m,,) and takingDal”l to be —A, equations (37) become

A = 8(3“Pr) (44)

S0
ak

T=34 (ZPI() . (45)
Substituting (45) in (43), we find the relations

8P, =20/ mj; + 9. (46)
In this way relations (46) emphasize the irreducible first-class constraints

vi=-2dm; —dm~0 (47)

which appear for instance in the example from section 5 in the livhi= 0 and in the
absence of the field&* (see the first relations in equation (133)).
Now we can show that the constraints (1) and (17) are equivalent to (22), i.e.

Vap ¥ 0& G, =0 qy ~ 0. (48)

It is easy to see that if (1) and (17) hold, then the constraints (22) also hold. The converse
is valid, too. Indeed, we will see that

Vap ¥ 0= G, =0 a, ~ 0. (49)
This can be shown as follows. First, we ap@§? on (22), which then yields

D, 2% Yay = Tay. (50)
With the help of (22) and (50) we obtain

(861:0 - Aaslﬁbil Zbgl) Yoo = Gao- (51)

From (50), (51) we obtain (49). The Poisson brackets between the irreducible first-class
constraints read

[yao’ Vbo] = chlobo Veo (52)
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where the new structure functions are expressed by

—=¢Co _ do co __ hl_ Cc1 co
¢ =C aobo (Sdo Ado Dbl Z 61)

a[)b()
+ ([Gags A1+ 1AL, Gogl + A A 74) Dy, 270, (53)

The first-class Hamiltonian of the new theory can be derived starting from the original one,

H. Indeed, if we take

H' = H + h“(q', p)m,, (54)
with

[hala Guo] = VaoboAbgl (55)
we subsequently find

, — b

[H ’ yao] = Vaooyho (56)
where

— b —=c

Ve =V, + ([H A"+ [0, A7) D, Z7,. (57)

It is clear that the first-class Hamiltonian (54) is not unique because we can always add to it
any combinations of,,'s with coefficients that are arbitrary functions. The change induced
by the modification of the Hamiltonian gives rise to a change in the structure functions (57).

In brief, in this section we constructed an irreducible first-class system associated
with the original redundant one, described by the constraints (22) and the first-class
Hamiltonian (54), displaying the gauge algebra (52) and (56). The irreducible theory built
here will be important by virtue of the subsequent development.

3. Irreducible quantization of the reducible theory

Now, we show that the reducible and irreducible theories possess the same classical
observables. We start from an observableof the irreducible theory. AccordinglyF
should verify the equations

[F, V4] ~ 0. (58)
On account of (22) and (50), from (58) we deduce

[F, Gup) + [F, 4] At =~ 0. (59)
On the other hand, multiplying (59) by“;’,l and using (51), we arrive at

[F, 7] D, ~ [F, 2% 1(8,2° = A,5D. 2" ) yuy ~ 0. (60)
BecauseDbf1 has maximal rank (see equation (24)), from equation (60) we infer

[F, 7] ~0 (61)
such that

[F. Vel 0 = [F, G4l ~0. (62)

In conclusion, ifF is an observable of the irreducible theory, then it is also an observable
of the original reducible one. The converse is valid, too, because any observable of the
reducible theory verifies the equations,[G,,] ~ 0 and does not depend on the newly
added canonical variables, such that (58) are indeed satisfied. Thus, both the irreducible
and reducible models display the same physical observables. A simple count shows that the
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numbers of physical degrees of freedom of the reducible, respectively, irreducible theories
are both equal t&V — Mo+ M;. The last conclusions prove that the original reducible theory
is physically equivalent to the irreducible one. This makes permissible the replacement of
the BRST quantization for the original redundant system by the BRST quantization of the
irreducible theory.

The first attempt at quantizing the irreducible system is to apply the antifield-BRST
formalism with respect to its extended action, namely,

S(/)E[qiv Di yalv 7Tu1, uao] = /dt (qlpl + yalﬂal - H/ - Maoyuo)' (63)
The action (63) is invariant under the gauge transformations
8eF =[F, Yg]€™ Seu = €9 — ngoeb" — f“l;ocouboém (64)

where thec® are the gauge parameters associated with the irreducible constraints (22). In
the absence of the newly introduced variables, the extended action (63) together with its
gauge transformations, equations (64), should reduce to those from the reducible case. The
gauge transformations of the Lagrange multipliers from (64) do not lead to the corresponding
transformations from the reducible situation because the ter#f§ ¢* are missing. The
gauge parameters®, which were attached to the first-stage reducibility functions, are
absent within the irreducible approach. In order to restore these terms, it is necessary to
further enlarge the phase space by adding some supplementary canonicétpajrs,,),

(25", P2a;), SUbject to the constraints

—P1, 0 P2a, ~ 0. (65)
Obviously, constraints (22) and (65) are still first-class and irreducible. Adding to the first

set of constraints from (65) a combination of first-class constraints (see equation (50)), we
obtain the equivalent first-class set

yal Enal _p1a1 %O ya/l Ep201 %0' (66)
The additional first-class constraints do not afflict the number of physical degrees of freedom
of the former irreducible system. At the same time, the above established equivalence
between the physical observables respectively associated with the reducible and irreducible

theories remains valid. This is because an observAbid the last irreducible model must
check, besides (58), the equations

[F.¥a] =0 [F,y,]~0. (67)

On account of (61) relations (67) indicate that in addition to the above condittons
does not depend (at least weakly) on the last added canonical pairs. As it will be seen
below, the constraints (66) will imply the presence of the terrs’, e“ within the gauge
transformations of the Lagrange multiplier®. In this sense, the constraints (66) play in a
certain way the role of the original reducibility relations. The first-class Hamiltonian with
respect to the first-class set (22) and (66) can be taken as

Ho=H'+25'Z" Yoy + Y"v,, (68)
such that the new irreducible gauge algebra reads

[Vaor Vool = C oy Voo Vao: V]l =0 [Vape ¥4, 1 =0 (69)
[Var, v0,] =0 [Vay: v5,] =0 Vo v, =0 (70)

[Ho. Yool = Volovso + ALy, [Hoval=v,,  [Ho.v]= 2% Ve (71)
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Simple calculations show that the functioﬁ%bo from (71) are of the form

Vil = Vo 4 25 (5, Gy + 23,0, 2%, + 127, 4,01 (72)
with p”¢ ~andi’,  appearing in

[Z,. Gapl = =Z, C% iy + 1% Go + W0, 2%, (73)
and ¢ - antisymmetric in the upper indices, i,%9%°, = —u%, . Relations (73) can be
inferred by taking the Poisson brackets between (2) @gd which leads to

(2%,C% 4 +129,.G4)) G, = 0. (74)

Equation (73) follows directly from (74) and (2). We outline that the functio_ﬁ%ob0

and v, encode the reducible structure within the irreducible theory. The first-class

Hamiltonian (68) is unique up to a combination in terms of the functigpsy., andy,,.

The change ofy consequently implies the change of the structure functions from (71).
The extended action describing the new irreducible theory

E [ a a
S§ (4" piv Y™ Tars 23 P1ays 255 P2ay, ™, u, v™]

= / dr (¢' pi + Y74y + 25 Pray + 25 P2ay — Ho — 4™y — 4y

—vy,) (75)
is invariant under the gauge transformations

8€F == [Fv Vao]eao + [F7 yal]eil + [Fa y[él]egl (76)

Seu® = ¢ — v, ©ebo — ) uoe — 7% 3 (77)

Seu™ = &t Sev™ =&t — A ™ — €t (78)

We emphasize that in this way the termsZ% ;' are restored within the gauge
transformations of the multiplierg. This is precisely the effect of introducing the
supplementary pairézy*, pia,). (25", p2,) Subject to the constraints (66). If in equations
(75)—(78) we discard all the newly introduced canonical pairs, we obtain the extended action
and the gauge transformations from the initial redundant case.

With these elements to hand, it appears clear that we can replace the quantization of the
initial theory by the quantization of the last irreducible system. In what follows we perform
the antifield-BRST quantization with respect to the action (75). To this end, we introduce
the ghosts

(n. nT" n3') (79)
and also the antifields
(g7, p*\ i T, s DY Ty P U WV T My M) (80)

The ghosts have ghost number 1, the antifields associated with the variables involved with
(75) possess ghost numbed, while the antifields of the ghosts have ghost number -2. The
solution to the master equation is given by

SF=5§+ / dr (qi‘[qi, Yaol1™ + P [Pi Vao ™

+ Vi (A0 4 1Y) = 20,15+ 254, 15"
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* (-dg 7 ao. bo —~ao bo ,.Cco ap a1
+ullo(n - Vbo U boco 1 —Z 111772)

. . —a
+uzln£ll1 + v;kl (ngl _ Aagln[lo _ r’il) _ %nzoc Zoconbonco + .. ) (81)

In order to derive a gauge-fixed action, it is necessary to fix the gauge. In this respect, it is
useful to take a gauge-fixing fermion

[ a a a a
v =v[q" pi. Y™ Tay. 215 Play 25' P2ags 10 01N 5t ug uh vk ] (82)

implementing some irreducible gauge conditions, with the help of which we eliminate all
the antifields excepting; , u; , v;, that are maintained in favour of their fields. The
possibility of building some irreducible gauge conditions is easier on behalf of the newly
added canonical pairs, which at this level play the same role as the auxiliary variables from
the reducible approach. We can put the gauge-fixed action in a form displaying a more
direct link with the Hamiltonian BRST quantization of the irreducible system following the
procedure exposed in [12, 13]. In this light, we declare the variabi€su,), (11, ),

(n5t, v¥) as respectively conjugated in the Poisson bracket

2 Yay

[uf,. 0] = —8,° [uf, 07 = =8, [v} . n5] = -5, (83)

ao 1

and regard the antifields like the momenta associated with the ghosts. Under these
circumstances, the gauge-fixed action corresponding to (81) reads as

Sy = / dr (' pi + Y Tay + 27" Pray + 25" Poay + w0 + i 07t 4 Vit — Hp + [, Q1)
(84)

where the BRST charge and BRST-extension of the first-class Hamiltonian respectively start
like

Q= Vaoﬂdo + Valnil + Va/l’?gl + Z_ZLMZOF"ObOCOnbonco 4+ ... (85)

Hg = Ho + u} (V0" + Z%n5") + vi (A& +n) + . (86)

0

This completes our irreducible procedure in the case of first-stage reducible first-class
Hamiltonian theories. Until now, we showed how a first-stage reducible first-class

Hamiltonian system can be quantized in the framework of the irreducible antifield-BRST

formalism, i.e. without introducing ghosts of ghosts.

4. L-stage reducible Hamiltonian theories

In this section we generalize the results from the first-stage case to higher-order-stage
reducible systems. If the original Hamiltonian theorylisstage reducible (with finitd.),

the construction of the corresponding irreducible system goes along the same line like that
from the first-stage case. We assume the reducibility relations

Z% Gy =0, Z%Zz% =0, ..., Z%?Z%*=0 (87)
witha, = 1, ..., M;. Next, we introduce the canonical paiig*, m,, )i=1,... corresponding

to the free indices of the above reducibility relations, and constrain these new variables as

T, ~ 0. (88)
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Constraints (1) and (88) are first-class and obviously reducible. In a manner similar to that
used in section 2, we derive the first-class constraints

Vao = Gy + Ayl 5, ~ 0 (89)
Yau = 2% Tay y + A2 Tap ., ~ 0 k=1,...,a (90)
Vg = Tay ~ 0 k=1...,a (91)

which are equivalent to (1) and (88). Acting like in the first-stage situation, we find that
Tagis = May Vo Gay =M™ Vo, k=0.....b (92)

for some appropriate functiorilzﬂaafﬁ1 andmaé’”, such that the equivalence between (1), (88)
and (89)—(91) is direct. We employed the notations

5L for L even
a= (93)
2(L-1 for L odd
sL—1 for L even
b= (94)
3(L—1) for L odd.
In (90) the functionsA,*** depend only on(¢’, p;) and possess the property
L
rank(Z%1 A, ") = Z(—)k+iMi. (95)
i=k

Moreover, theA bk ,'S can be taken to satisfy the relations
A h A =0, (96)

k-1
The last relations are based on the fact that we can always chooﬂ%ﬁ’gﬁe proportional
with the transposed of“; 1’s On account of (96), one finds that the first-class set (89)—(91)
is irreducible. We remark that the constraint functions from (91) are irreducible. Thus, it
remains to be proved that (89), (90) are so. This can be seen by multiplying (%‘)‘,jlby
and (90) byz“* | which induce

b

Z% Yay = 2%, Ay ey Z Vs = 2 A Ty 97)
With the help of (97) and (96) we infer tha") y.,, = 0, Z% v, = 0 if and only if

Tans = Apy i Vays k=0,...,b (98)
wherev,,, ,, are some functions. Replacing (98) in (89), (90) we obtain

Gy ~0 Z% A S v, ~ 0 (99)

which leads, by virtue of (95)—(96), to
Vag, R A2 Ny (100)

for somea,,,,,. Substituting (100) in (98) we derive the result that (89), (90) are reducible
with the reducibility functionsz®y if and only if 7,,,, ~ 0. In this situation the
constraints (89), (90) and (91) are simply (1) and (88). Thus, the constraint functions
appearing in (89)—(91) are reducible with the reducibility 1‘unct|(Zﬁ‘$2k+1 if and only if

they have the form (1) and (88). On the other hand, if one multiplies (90;,};5]1, one

obtains
Ay Vay = Apy? 2% Ty, (101)

bo-1
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due to (96). From (101)Ab2k Vay, = 0 if and only if

Tay_1 = Zag‘zkzluaz(fZ (102)
for somepu,,, ,. Inserting (102) in (90) we find
Aa;l:kﬂzbskz“l“bﬂ ~0 (103)

which leads to
Wby Zaz" 10a2k . (104)

for someo,, ,. Introducing (104) in (102) we conclude that (89)—(91) are reducible with
the reducibility functionsA, “” if and only if they reduce to (1) and (88). In this way, the
irreducibility of (89)—(91) |s proved completely.

In the meantime, it is still necessary to add the p&iS™*, pis,..), (5™, P2ay.i)s
with k = 0,...,b. With the help of the last pairs we build the supplementary first-class
constraints

y02k+1 = naZkH - p1a2k+1 ~ O y¢;2k+1 = p2ﬂ2k+1 a 0 (105)
The equivalence between the observables of the original redundant theory and those of the
irreducible system is obtained as in the first-stage situation. We illustrate the proof of the
equivalence in the cask odd, the other situation being treated in a similar fashion. If
F stands for an observable of the irreducible system, the conditibyig,[ | ~ O indicate
that it does not depend, at least weakly,#. In the meantimeF should verify

[F, V4, ] = 0 k=0,...,a. (106)
We start from the last relation (106) (fér= a). On account of (92), we obtain

[F, 7m0, )22 +[F, m, ]AS", ~ 0. (107)
Multiplying the above equation bz“‘ !, on behalf of (95), and a#f; ,; = 0, we derive

[F, 7, ]~0 (208)
such that (107) becomes

[F,ma, 122 =~ 0. (109)
Multiplying the next equation from (106) (for = a — 1) by Z‘” ®_, we further infer

[F,ma, A 222 ~ 0. (110)
With the help of (96), from (110) we deduce

[F, 7, ) = np, AL (111)

for some functionsz,, ,. Replacing (111) in (109) it follows that the weak relations
nthlAaszlzuthLzl ~0 Imply

Mo,y & oo, Ay (112)
for somepy, . Inserting (112) in (111) we obtain
[F, 7, ,] =0 (113)
due to (96). Repeating the same steps on the remaining equations (106) we arrive at
[F,n,_,]~0 (114)

which lead to
[F, Gyl 0. (115)
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Moreover, equationsH, v, ,] ~ 0 and [F,y,, ] ~ 0 express the fact that does not
depend on the’s. Thus, any observable of the irreducible theory does not involve, at least
weakly, the newly introduced variables, and, in addition, it satisfies (115), which are simply
the equations that should be checked by any observable of the original redundant system,
which show thatF is also an observable of the reducible theory. Conversely, denotes
an observable associated with the reducible system, then it is obviously an observable of
the irreducible theory.

The first-class Hamiltonian with respect to the irreducible first-class constraints (89)—
(91) and (105) can be taken in the form

a b b
Hy=H'+Y Var + Y ¥ Doz + ) 352 (2% Vo + A2 Vans)  (116)
k=1 k=0 k=0

with H’ given by (54), where we understood the conventfsh=0if k <0 ork > L. The
first-class Hamiltonian (116) is again unique up to adding a combination in the first-class
constraint functions.

With all these elements to hand, the quantization of the irreducible theory goes from
now on along the standard antifield-BRST rules. The ghost spectrum contains only the
ghost number 1 variables associated with the corresponding constraint functions

N < Y 07 < Vo N < Vas, k=1,...,a (117)
N7 < Vg 2t < Va/zk“ k=0,...,b (118)

while the antifield sector is given by

(qi*’ p*i) (y:k’ n*ak)k=l ..... L (Zakﬂzku’ piaﬂﬂ)k:O ..... b (Zzﬂzﬂl’ p;aZkﬂ)k:O ..... b
(119)
u:o, (u:zk’ U:;Zk)k=1 ..... a (uzzwfl’ U:2k+1)k:0 ..... b (120)
Mg (Mg M) (UL : (121)
0 2k 2%/ k=1,...,a 2k+1 2%+1/ k=0,...,b

.....

The antifields(u}, , v}, ) correspond to the Lagrange multipliers of the constraint functions

Vg respectively,yaf, and (uy, ., vy, ) are associated withy,,,,, respectively,y,, ..
The variables (119), (120) have ghost numbédr, while in (121) only ghost humber2
antifields appear. The gauge-fixing fermion should be taken as depending & ‘theon

the ghosts, and also on the antifields of the Lagrange multipliers, where

o4 = (qi’ pi; yak’ Tay s chmﬂv Play.a» Zgzkﬂv p2a2k+1)' (122)

With the help of the gauge-fixing fermion we eliminate all the antifields except the antifields
of the multipliers, and also the Lagrange multipliers. The gauge-fixed action will be
expressed by

L b
%sz@m+ZwM+Zﬁwmw+$%mg
k=1 k=0

L
g i+ Y (upng + vingt) — He + [¥, Q]) (123)
k=1
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where the BRST charge and the BRST extension of the first-class Hamiltonian (116)
respectively start like
b

a
_ 1
Q=1+ Y Tur 5 + Vau15") + Y Vanaa 1™ + Vi) +

D co
214 c* bocor; n
k=1 k=0

+5 Z Z Z a2j b2k621 n1272k 77;2’ + - (124)

11k11

Hp = Hf+ u, (V,,“0 bo 7% 15 ) + Z%( + ZV,,Z 22
k=1

'|'Za§lk2k+1 u2k+1+AaZkZLl g 1) +Ua1 (771 +Aa§177a°+2“1 02)
b

D, (7 A 2 ) (125)
k=1

The functionsC Z’ andV “are those involved with the irreducible gauge algebra arising
in the L-stage redumble case In this way, we realized the BRST quantization of arbitrary
L-stage reducible first-class Hamiltonian systems in an irreducible manner, i.e. without
introducing ghosts of ghosts. This completes our analysis.

5. Example

Here we exemplify the general theory exposed above in the case of Abelian one- and
two-form gauge fields with Stueckelberg coupling. We start with the Lagrangian action

SL[HH A/w] = /d4 12 I/-VP (MAp,v - Fp.v)z) (126)

where F,,, and F,,,, denote the field strengths associated witf, respectively,A,,, and
the notationFlfw, signifies F,,, F***. (We used a similar notation for the other square.)
The system described by the action (126) possesses the first-class constraints

G =715 ~0 GY =Tp~0 (127)
G? = —20'7; + MTI; ~ 0 G?=—-9'T1; ~0 (128)
and the first-class Hamiltonian
H= /d3x (—7m2 — 3112+ A%G? + H°G? + LF2 + 2(MA;; — Fiy)?). (129)

In (127)—(129), ther’s and IT's are the canonical momenta associated with the
correspondingd’s and H'’s. The first-class constraints (128) are first-stage reducible:

8"G§2) +MG® =0 (130)
with the reducibility functions
zZ% = (3", M). (131)

The functionsA ;* read

a __ _81
ar=(7) -
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such thatz®, A b = —(3'9; + M?) is invertible. The variablegy“, r,,) will be denoted

ay a

in this case by(¢, 7). The irreducible first-class constraints are given by (127) and
y? = —20'm; + MT1; — 0, ~ 0 y@ =9, —Mr~0  (133)
while the first-class Hamiltonia{’ (see equation (54)) reads

H =H+ f s (—A%%mr — MH). (134)
We introduce the pairgp1, 1), (@2, 72), and set the constraints

y=nm—m~0 y' =mo~0. (135)
The momentunt is indeed a combination of the first-class constraints (133):

1 2
= (3'y® + My®). 136

= G O M) (139)
The first-class Hamiltonian with respect to (127), (133) and (135) has the form

Ho=H' + / Fx (—p200'y® + My®@) — om,) = / x ho. (137)

The extended action

SOE = fd4x (AOiJTOi + Aijﬂ'ij + HOH0+ HiHi +§07T +(p17’[1

+ @omy — ho — uiGﬁl) —uGY —u'y — viyi(z) —vy@ — v'y') (138)
is invariant under the gauge transformations
8. A% =€l 8. H® =€ 8 AU = pliel] S H' =0'ey+ Mé (139)

8ep = dieh — Mea + & Sepr = —€1 Sep = & Seu = €1, 8.u = 6;1, (140)
Sevt =éh—9'é — €l SV =ér+ Mé— e SV = éx4 dieh — Mepy + & (141)

the gauge variations of all the momenta being identically vanishing. In equations (139)—
(141) the gauge parameters, €1, €5, €2, €1 and €, are respectively associated with the
constraint functionsG'”, G, y®, y@, , andy’. From equations (139)—(141) we

can derive the Lagrangian gauge transformations associated with the irreducible theory
(including, of course, the gauge transformations of the original fields). In view of this
we should consider a model of irreducible Hamiltonian theory. In this light we assume
that (127) and the former constraint in (135) are primary, while (133) and the latter constraint
from (135) are secondary. Passing from the extended action (138) to the corresponding total
one (obtained by taking’ = 0, v =0 andv’ = 0 in (138)) we derive its gauge invariances

in the standard manner. Indeed, the equatigns: 0, v = 0 andv’ = 0 imply §.v' = 0,

8.v =0 ands.v’ = 0. The last three equations lead via (141) to

Ei = 612 — 8i€2 €1 = é2 + MEZ 51 = —ég — Bieé + M62. (142)
Replacinge!, €; andé; from (142) in (139)—(140) we obtain

8. A% = &b — 3'e, 8 H® = ép+ Mé&, 5. AU = pliel) S.H' =d'er+ Méh
(143)
Sep = —é5 Sepr = Ex+ D€y — Mey Sepp =€ (144)

Seu = ép + Mé; Seu = —€y — 0;éb+ Més. (145)
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The Lagrangian action corresponding to the above total action coincides with the original
one, and its gauge transformations, which derive from (143), (144), read

S AMY = 9te¥ — 9Ve! S H" = 0te + Mt 8epr = 0,€" — Me. (146)

The gauge transformations fprandg, were omitted as these fields play the role of Lagrange
multipliers (see equation (137)) and are not relevant in the Lagrangian context. In order to
write down (146) we employed the notation

et = (62, 6’2) € = éo. (247)

As a consequence, our formalism reproduces the original gauge transformations via (139)—
(141) and outputs some new gauge transformations ¢fprthat also make the gauge
transformation set (146) irreducible at the Lagrangian level. The Lorentz covariance of
the gauge transformations (146) is due to the introduction in the theory of the(pairs)

and (g2, m2).
In what follows we approach the antifield BRST treatment of (138). Straightforward
calculation then yield the solution to the master equation

St =585 + f d*x (Aar;"l + Hymy + AU ) + HF (87n2 + M)
+¢* (8imh — M2 + iin) — @il + @3z + ul iy + iy + u i,
+ v} (05 — 8'fi2 — my) 4+ v* (12 + Miip — n1)

+ 0" (il + By — Mnz + i) ). (148)

All the ghosts from (148) have ghost number 1, and all the antifields ghost nuribene
take the gauge fixing fermion

V= / d'x (uf (A7 + MH +3'¢1) +u*(3:H — Mo1) —u™(9;A°+ MH%)  (149)

which implements the irreducible gauge conditions’/' + M H' +9'¢p1 = 0, ; H' — Mg, =
0, andajAJ'0 + M H° = 0. After some computation we are led to the gauge-fixed action

SE =S5+ / d*x (B, (3,A" + MH" + 3"¢1) + b(3,H" — Mgy) +

+u (O + M*nh +u* (O + M?)ny) (150)
such that the resulting path integral is given by

Zy = / DA DH" DB, Db Dy, Du}, Dy Du* Dn, exp iS;.  (151)

In (150), (151) we employed the identifications
B,=(m,my)  b=To  u,=(—u"u})  ny= (2 n. (152)

One can check that there are no residual gauge invariances in the action (150). Moreover,
the gauge-fixed action (150) is Lorentz covariant. This is due precisely to the introduction
in the theory of the pairgp1, 71) and (¢,, m2) subject to the constraints (135).

While the gauge-fixing fermion (149) is useful in obtaining the covariant path
integral (151), the fermion

v = / d'x (uf (@A77 — A% + 9'¢1) + u* (3 H' — H®) — u*(3;A7° — ¢)) (153)
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is appropriate in order to make the reduction to the physical degrees of freedom in the path
integral. Starting with the solution (148) and relying on the gauge-fixing fermion (153),
after some computation, we find the path integral over physical degrees of freedom for the
model under consideration of the form

Zy = / DAY Drm;j DH' DIN; Dyy Dy 8(3 7 + 9;71)

X 8(3; A7+ 9'p1)8(9' T8 (3 H') exp ISy (154)
where S, is given by
Sy = /d“x (AVmi; + H'T; + 1 4+ 317 — S F5, — 5(MA;; — Fyj)?). (155)
The delta functions from the constraint functions and their gauge conditions in the path
integral (154) show that the independent fields and momenta are precisely the transverse
components ofl’ and I1; and also the longitudinal components &f' and ;. It is
clear that the condition8'Tl; = 0 andd; H' = 0 restrict the integration only over the
two transverse degrees of freedom for the vector fields and their momenta (typically for
electromagnetism). Related to the remaining conditions from the measure of (154), it can
be shown that they enforce the longitudinal parts as independent components of the tensor
fields and their momenta. Indeed’ andr;; can be decomposed into longitudinal and
transverse components

Aij = 8,AJT — 8JA,T + sl-jké)kAL 7T,'j = 8,-an — 8j7'[l-T + 8,‘jkak7TL (156)
where the transverse components sat@fy! = 0 and 'z = 0. Then, via (156) the
conditionsd; A’ + 9'p; = 0 andd/z;; + 9;71 = O imply that

9'0;A] + 051 =0 0] + m =0 (157)
and hence
AT Y T__ Y (158)
i = A(,0]_ JTj = A]'L’;]_.

On the other hand, from (157) it follows thatd;¢p; = 0 andd’9,; = 0, which then yield

¢1 = 0, m; = 0 by virtue of the boundary conditions for the unphysical degrees of freedom
(¢1, m1) (vacuum to vacuum). Inserting the last relations back in (158) we find that the
conditions checked by the tensor fields and their momenta Ieakj't:e 0 and:zjT =0, so

the only physical degrees of freedom are described by the longitudinal gajerr-). In

this way the conditions implemented in the measure of (154) lead to transverse degrees of
freedom for the vector fields, respectively to a longitudinal one for the tensor fields, like in
the reducible approach. This completes the analysis of the investigated model.

6. Conclusion

In conclusion, we succeeded in giving a systematic irreducible procedure for quantizing
reducible first-class Hamiltonian systems according to the antifield BRST method. This
new result was inferred by means of constructing an irreducible first-class Hamiltonian
theory in a larger phase space which remains physically equivalent to the original redundant
one. The above equivalence makes the replacement of the quantization of the reducible
theory by that of the irreducible system legitimate. As a consequence of our irreducible
approach, the ghosts of ghosts, their antifields, as well as the pyramidal structure of auxiliary
fields are no longer necessary. We further illustrate in detail the theoretical part of the paper
in the case of the Stueckelberg coupled Abelian one- and two-form gauge fields.
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