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Hamiltonian systems

C Bizdadea† and S O Saliu‡
Department of Physics, University of Craiova, 13 A I Cuza Str., Craiova RO-1100, Romania

Received 7 January 1998, in final form 24 June 1998

Abstract. Reducible constrained Hamiltonian systems are quantized according to an irreducible
BRST mechanism. Our procedure is based on the construction of an irreducible theory which
is physically equivalent to the original one. The equivalence between the two systems allows
the substitution of the BRST quantization of the reducible theory with the BRST quantization
of the irreducible theory. The general formalism is illustrated in the case of a model involving
Abelian one- and two-form gauge fields.

1. Introduction

It is well known that there are two BRST approaches to the quantization of arbitrary gauge
theories. One of them is based on the Lagrangian formalism [1–6] (known as the antifield
formalism), while the other deals with Hamiltonian aspects [6–11]. Both formulations can
be applied to irreducible, as well as reducible gauge systems. For reducible theories, it is
necessary to introduce ghosts of ghosts and their antifields in order to ensure the nilpotency
of the BRST symmetry. The antifield treatment was extended to constrained Hamiltonian
systems [12, 13], therefore allowing a clearer connection between the Lagrangian and the
Hamiltonian BRST symmetries.

In this paper we give a consistent procedure for quantizing reducible Hamiltonian
systems with first-class constraints following an irreducible BRST mechanism. Although
the idea of replacing a redundant set of first-class constraints by an irreducible one in
a larger phase space is known [6, 14], it has neither been consistently developed nor yet
applied to the quantization of reducible gauge theories. Starting with a finite-stage reducible
Hamiltonian first-class system, we perform the following steps: (i) we transform the original
reducible theory into an irreducible one in a manner that allows the substitution of the BRST
quantization of the reducible system with the BRST quantization of the irreducible theory;
(ii) we quantize the extended action of the irreducible system accordingly the antifield-BRST
formalism. As a consequence, the ghosts of ghosts, as well as their antifields, do not appear
within our formalism. By virtue of this, our method puts the reducible and irreducible
constrained Hamiltonian systems on an equal footing from the BRST formalism point of
view. As far as we know, such an approach has not previously been published, hence our
paper establishes a new result.

The paper is organized in six sections. Section 2 deals with enlarging the initial phase
space of an arbitrary first-stage reducible Hamiltonian system by adding some supplementary
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canonical pairs, and further with constructing an irreducible set of first-class constraints. The
irreducible set is derived in a way that ensures equivalence with the starting first-class set.
In section 3 we establish the physical equivalence between the reducible and irreducible
systems. In this light, the physical observables and also the number of physical degrees
of freedom associated with both theories are shown to coincide. The physical equivalence
permits the replacement of the reducible BRST quantization by the irreducible one. The
quantization of the resulting irreducible first-class Hamiltonian system is then performed on
behalf of an appropriate gauge-fixing fermion. Section 4 generalizes our results from the
previous sections to finite-stage reducible first-class constraints. In section 5 we exemplify
the general theory in the case of a reducible model describing the Stueckelberg coupling
between Abelian one- and two-form gauge fields. Finally, in section 6 we set out our
conclusions.

2. First-stage reducible Hamiltonian theories

In this section we show how one can construct a set of irreducible first-class constraints
starting from a first-stage reducible one. We begin with a system described byN canonical
pairs(qi, pi), subject to the first-class constraints

Ga0(q, p) ≈ 0 a0 = 1, . . . ,M0 (1)

which are assumed to be first-stage reducible

Za0
a1
Ga0 = 0 a1 = 1, . . . ,M1 (2)

and suppose that there are no second-class constraints in the theory. In (2) we used the
strong equality because one can always define the first-stage reducibility functions so as
to have off-shell reducibility. For the sake of simplicity, we assume that(qi, pi) are
bosonic, but the results can be extended to fermions by introducing some appropriate phases.
We denote the first-class Hamiltonian byH , such that the gauge algebra is expressed by
[Ga0,Gb0] = Cc0

a0b0
Gc0, [H,Ga0] = V b0

a0
Gb0. Relations (2) indicate that the functionsGa0

are not all independent. Under these circumstances, we locally split these functions within
the independent and dependent componentsGa0 andGa1, respectively:

Ga0 =
(
Ga0

Ga1

)
a0 = 1, . . . ,M0−M1 (3)

with

Ga1 = M a0
a1
Ga0 (4)

for some functionsM a0
a1

, such thatGa0 ≈ 0⇒ Ga1 ≈ 0. All that is required is to choose
the functionsGa0 in such a way that the split can be achieved in principle. With the help
of equations (4) we solve (2) forZa0

a1
. Accordingly, we find

Z
a0
b1
= (M a0

b1
,−δ a1

b1

)
. (5)

Next, we perform a transformation

Ga0 → G̃a0 =
(
Ga0

0

)
(6)

with the help of an invertible matrixM b0
a0

:

G̃a0 = M b0
a0
Gb0 (7)
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such thatG̃a0 ≈ 0⇔ Ga0 ≈ 0. This matrix permits the representation

M b0
a0
=
(
δ
b0
a0

0

M b0
a1
−δ b1

a1

)
(8)

while its inverse coincides with itself:

M
b0

a0
= M b0

a0
. (9)

If one inverts equation (7), one obtains

Ga0 = M b0
a0
G̃b0 (10)

so, on account of (10) and (2), we consequently find

Z
a0
b1
Ga0 = Za0

b1
M b0
a0
G̃b0 = 0. (11)

In this way, we can regard

Z̃b0
c1
= Za0

c1
M b0
a0

(12)

as the reducibility functions of̃Gb0. Using equations (5) and (8) it follows thatZ̃b0
c1

is given
by

Z̃b0
c1
= (0, δ b1

c1

)
. (13)

If one splits the free index in (12) intob0 = (b0, b1) and uses (13), one derives (forb0→ b1)

Za0
c1
M b1
a0
= δ b1

c1
(14)

hence

rank
(
Za0

c1
M b1
a0

) = M1 (15)

where

M b1
a1
=
(

0

−δ b1
a1

)
. (16)

Next, we transform the reducible constraints (1) into some irreducible ones. In this
respect, we introduce a canonical pair(ya1, πa1) associated with every (free index of)
relation (2), on which we impose the constraint

πa1 ≈ 0. (17)

Obviously, the constraints (1) and (17) are first-class and reducible. The theory based on
these constraints is physically equivalent to that based only on the constraints (1) as the two
systems display the same number of physical degrees of freedom, and, moreover, it can be
shown that they describe the same physical observables. Indeed, iff denotes an observable
of the theory with the constraints (1) and (17), then it is also an observable of the original
one. The last statement arises in a simple manner by writing down the equations satisfied
by f , namely,

[f,Ga0] ≈ 0 [f, πa1] ≈ 0. (18)

Equations (18) show thatf does not depend (at least weakly) onya1, and, in addition, that
the observables associated with this theory fulfill [f,Ga0] ≈ 0, which are nothing but the
equations verified by the observables corresponding to the original system. The converse
is also valid, i.e. any observable of the original theory satisfies (18) because it does not
depend on(ya1, πa1) and checks by definition [f,Ga0] ≈ 0.
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Dropping out the trivial part of (6), we construct the irreducible first-class constraints

γ̃a0 =
(
Ga0

πa1

)
≈ 0 (19)

such that the momentaπa1 replace the dependent constraint functions. With the help of (6)
and (16), the constraints (19) can be put in the form

γ̃a0 = G̃a0 −M b1
a0
πb1 ≈ 0. (20)

Now, we pass from (20) to the equivalent set of first-class constraints

γa0 = M b0
a0
γ̃b0 (21)

with M b0
a0

the matrix (8). Adopting the notationA b1
a0
= −M b0

a0
M

b1
b0

and using (10),
from (21) we find the first-class constraints

γa0 ≡ Ga0 + A b1
a0
πb1 ≈ 0. (22)

The matrixA b1
a0

also verifies (14). Indeed, we have that

Za0
c1
A b1
a0
= −Za0

c1
M b0
a0
M

b1
b0
= Z̃b0

c1
M

b1
b0
= δ b1

c1
. (23)

However, from practical reasons it is useful to weaken the condition (23) by takingA b1
a0

such thatZa0
c1
A b1
a0
= D b1

c1
is invertible, i.e.

rank
(
D b1
c1

) = M1. (24)

We employ this choice throughout the paper. Moreover, the first-class constraints (22) are
irreducible. Indeed, we have thatZa0

a1
γa0 = D b1

a1
πb1 is non-vanishing due to (24).

Within the above discussion we supposed that the split of the reducible constraints
into independent and dependent ones can be done in principle, this assumption being
useful for some technical purposes. Indeed, the split form of the original constraints
represents an intermediate step in finally reaching the irreducible constraints (22) where
the initial constraint functions appear in a covariant (not split) form. The derivation
of the constraints (22) based on the above split is still useful in order to outline the
introduction of the intermediate reducible system possessing the constraints (1) and (17),
which subsequently emphasizes in a suggestive manner how the dependent constraints can
be replaced by some new degrees of freedom ensuring the irreducibility. However, the
separation of the reducible constraints can spoil the covariance or destroy the locality of
those relations where it is manifest. In fact, the split hypothesis is not crucial in arriving
at (22) and can be replaced by homological arguments, as follows. It is well known that
the BRST symmetrysR associated with a Hamiltonian reducible theory contains two basic
differentials

sR = δR +DR + · · · (25)

whereδR denotes the Koszul–Tate differential andDR stands for a model of longitudinal
derivative along the gauge orbits. In the case of first-stage reducible systems, the action of
δR on the original phase-space variables and on the generators(Pa0,Pa1) in the Koszul–Tate
complex reads

δRq
i = 0 δRpi = 0 (26)

δRPa0 = −Ga0 (27)

δRPa1 = −Za0
a1
Pa0 (28)
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wherePa0 andPa1 have the antighost number 1, respectively, 2. The antighostsPa1 are
required in order to kill the non-trivial co-cycles of antighost number 1:

ρa1 ≡ Za0
a1
Pa0 (29)

in the homology ofδR. The idea with the help of which we can recover (22) is to redefine
the antighostsPa0 such that the non-trivial co-cycles of the type (29) vanish identically. If
we succeed in doing this, the co-cycles (29) do not appear anymore, hence the antighosts
Pa1 are no longer necessary such that the theory becomes indeed irreducible. In this light,
we perform the transformation

Pa0 → P̃a0 = D b0
a0
Pb0 (30)

whereD b0
a0

is chosen such that

Za0
a1
D b0
a0
= 0 D b0

a0
Gb0 = Ga0. (31)

From (27) and (30), (31) we obtain

δP̃a0 = −Ga0 (32)

which subsequently leads to

δ
(
Za0

a1
P̃a0

) = 0 (33)

but with

Za0
a1
P̃a0 ≡ 0. (34)

In (32), (33) we re-denotedδR by δ in order to outline that the new theory is irreducible.
If we take

D b0
a0
= δ b0

a0
− Zb0

a1
D

a1

b1
A b1
a0

(35)

whereD
a1

b1
is the inverse ofD a1

b1
, equations (31) are clearly satisfied. Substituting (35)

in (32) we find that

δ
(
Pa0 − Zb0

a1
D

a1

b1
A b1
a0
Pb0

) = −Ga0. (36)

As the co-cycles (34) vanish identically it results that (32) or (36) can be precisely associated
with an irreducible system. In order to derive the form of the irreducible constraints we
consider the new canonical pairs(ya1, πa1), with πa1 the non-trivial solutions of the equations

D b1
a1
πb1 = δ

(−Zb0
a1
Pb0

)
. (37)

Equations (37) may have trivial, as well as non-trivial, solutions. Initially, we notice that
πb1 = 0 (trivial solutions) if and only ifδ(−Zb0

a1
Pb0) = 0. This case corresponds to

the reducible theory with the constraints (1) and (17) (in this situation we obtain the co-
cycles (29)). The non-trivial solutionsπb1 6= 0 appear if and only ifδ(−Zb0

a1
Pb0) 6= 0 (the

quantities (29) are no longer co-cycles), hence if and only if the theory is irreducible. While
within the split context the momentaπb1 replace the dependent constraint functions, in the
homological approach they enforce the removal of the co-cycles (29). Expressingπb1 from
(37) (in the irreducible caseπb1 6= 0) as

πb1 = δ
(−Zb0

a1
D

a1

b1
Pb0

)
(38)

and replacing this result in (36) we obtain the relations

δPa0 = −Ga0 − A b1
a0
πb1 ≡ −γa0. (39)

The last equations are simply the definitions ofδ on the antighost number 1 antighostsPa0,
which are attached to the irreducible system having the constraints (22). In conclusion, the
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first-class constraints (22) can be derived by requiring that the non-trivial co-cycles of the
type (29) vanish identically under the redefinitions (30). For instance, in the case of free
Abelian two-form gauge fields the reducible first-class constraints read as

G
(2)
i ≡ −2∂jπji ≈ 0. (40)

The model is first-stage redundant, namely,ZiG
(2)
i = 0, with Zi ≡ ∂i . The actions of the

reducible Koszul–Tate differential on the antighost number 1 antighostsPi are given by

δRPi = 2∂jπji . (41)

RedefiningPi such that

Pi → P̃i =
(
δ
j

i −
∂i∂

j

4
)
Pj ≡ D j

i Pj (42)

from (41) we find

δ

(
Pi − ∂i∂

j

4 Pj
)
= 2∂jπji (43)

where4 = ∂k∂
k. Introducing the canonical pair(ϕ, π) playing the role of the variables

(ya1, πa1) and takingD b1
a1

to be−4, equations (37) become

4π = δ(∂kPk) (44)

so

π = δ
(
∂k

4Pk
)
. (45)

Substituting (45) in (43), we find the relations

δPi = 2∂jπji + ∂iπ. (46)

In this way relations (46) emphasize the irreducible first-class constraints

γi ≡ −2∂jπji − ∂iπ ≈ 0 (47)

which appear for instance in the example from section 5 in the limitM = 0 and in the
absence of the fieldsHµ (see the first relations in equation (133)).

Now we can show that the constraints (1) and (17) are equivalent to (22), i.e.

γa0 ≈ 0⇔ Ga0 ≈ 0 πa1 ≈ 0. (48)

It is easy to see that if (1) and (17) hold, then the constraints (22) also hold. The converse
is valid, too. Indeed, we will see that

γa0 ≈ 0⇒ Ga0 ≈ 0 πa1 ≈ 0. (49)

This can be shown as follows. First, we applyZa0
c1

on (22), which then yields

D
c1

a1
Za0

c1
γa0 = πa1. (50)

With the help of (22) and (50) we obtain(
δ b0
a0
− A b1

a0
D

c1

b1
Zb0

c1

)
γb0 = Ga0. (51)

From (50), (51) we obtain (49). The Poisson brackets between the irreducible first-class
constraints read

[γa0, γb0] = Cc0

a0b0
γc0 (52)
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where the new structure functions are expressed by

C
c0

a0b0
= Cd0

a0b0

(
δ
c0
d0
− A b1

d0
D

c1

b1
Zc0

c1

)
+ ([Ga0, A

b1
b0

] + [A b1
a0
,Gb0] + [A b1

a0
, A

d1
b0

]πd1

)
D

c1

b1
Zc0

c1
. (53)

The first-class Hamiltonian of the new theory can be derived starting from the original one,
H . Indeed, if we take

H ′ = H + ha1(qi, pi)πa1 (54)

with

[ha1,Ga0] = V b0
a0
A

a1
b0

(55)

we subsequently find

[H ′, γa0] = V b0

a0
γb0 (56)

where

V
b0

a0
= V b0

a0
+ ([H,A a1

a0
] + [hb1, A a1

a0
]πb1

)
D

c1

a1
Zb0

c1
. (57)

It is clear that the first-class Hamiltonian (54) is not unique because we can always add to it
any combinations ofγa0’s with coefficients that are arbitrary functions. The change induced
by the modification of the Hamiltonian gives rise to a change in the structure functions (57).

In brief, in this section we constructed an irreducible first-class system associated
with the original redundant one, described by the constraints (22) and the first-class
Hamiltonian (54), displaying the gauge algebra (52) and (56). The irreducible theory built
here will be important by virtue of the subsequent development.

3. Irreducible quantization of the reducible theory

Now, we show that the reducible and irreducible theories possess the same classical
observables. We start from an observableF of the irreducible theory. Accordingly,F
should verify the equations

[F, γa0] ≈ 0. (58)

On account of (22) and (50), from (58) we deduce

[F,Ga0] + [F, πa1]A a1
a0
≈ 0. (59)

On the other hand, multiplying (59) byZa0
b1

and using (51), we arrive at

[F, πa1]D a1
b1
≈ [F,Za0

b1
]
(
δ b0
a0
− A c1

a0
D

d1

c1
Z
b0
d1

)
γb0 ≈ 0. (60)

BecauseD a1
b1

has maximal rank (see equation (24)), from equation (60) we infer

[F, πa1] ≈ 0 (61)

such that

[F, γa0] ≈ 0 ⇒ [F,Ga0] ≈ 0. (62)

In conclusion, ifF is an observable of the irreducible theory, then it is also an observable
of the original reducible one. The converse is valid, too, because any observable of the
reducible theory verifies the equations [F,Ga0] ≈ 0 and does not depend on the newly
added canonical variables, such that (58) are indeed satisfied. Thus, both the irreducible
and reducible models display the same physical observables. A simple count shows that the
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numbers of physical degrees of freedom of the reducible, respectively, irreducible theories
are both equal toN−M0+M1. The last conclusions prove that the original reducible theory
is physically equivalent to the irreducible one. This makes permissible the replacement of
the BRST quantization for the original redundant system by the BRST quantization of the
irreducible theory.

The first attempt at quantizing the irreducible system is to apply the antifield-BRST
formalism with respect to its extended action, namely,

S ′E0 [qi, pi, y
a1, πa1, u

a0] =
∫

dt (q̇ipi + ẏa1πa1 −H ′ − ua0γa0). (63)

The action (63) is invariant under the gauge transformations

δεF = [F, γa0]εa0 δεu
a0 = ε̇a0 − V a0

b0
εb0 − Ca0

b0c0
ub0εc0 (64)

where theεa0 are the gauge parameters associated with the irreducible constraints (22). In
the absence of the newly introduced variables, the extended action (63) together with its
gauge transformations, equations (64), should reduce to those from the reducible case. The
gauge transformations of the Lagrange multipliers from (64) do not lead to the corresponding
transformations from the reducible situation because the terms−Za0

a1
εa1 are missing. The

gauge parametersεa1, which were attached to the first-stage reducibility functions, are
absent within the irreducible approach. In order to restore these terms, it is necessary to
further enlarge the phase space by adding some supplementary canonical pairs(z

a1
1 , p1a1),

(z
a1
2 , p2a1), subject to the constraints

−p1a1 ≈ 0 p2a1 ≈ 0. (65)

Obviously, constraints (22) and (65) are still first-class and irreducible. Adding to the first
set of constraints from (65) a combination of first-class constraints (see equation (50)), we
obtain the equivalent first-class set

γa1 ≡ πa1 − p1a1 ≈ 0 γ ′a1
≡ p2a1 ≈ 0. (66)

The additional first-class constraints do not afflict the number of physical degrees of freedom
of the former irreducible system. At the same time, the above established equivalence
between the physical observables respectively associated with the reducible and irreducible
theories remains valid. This is because an observableF of the last irreducible model must
check, besides (58), the equations

[F, γa1] ≈ 0 [F, γ ′a1
] ≈ 0. (67)

On account of (61) relations (67) indicate that in addition to the above conditionsF

does not depend (at least weakly) on the last added canonical pairs. As it will be seen
below, the constraints (66) will imply the presence of the terms−Za0

a1
εa1 within the gauge

transformations of the Lagrange multipliersua0. In this sense, the constraints (66) play in a
certain way the role of the original reducibility relations. The first-class Hamiltonian with
respect to the first-class set (22) and (66) can be taken as

H0 = H ′ + za1
2 Z

a0
a1
γa0 + ya1γ ′a1

(68)

such that the new irreducible gauge algebra reads

[γa0, γb0] = Cc0

a0b0
γc0 [γa0, γa1] = 0 [γa0, γ

′
a1

] = 0 (69)

[γa1, γb1] = 0 [γa1, γ
′
b1

] = 0 [γ ′a1
, γ ′b1

] = 0 (70)

[H0, γa0] = Ṽ b0
a0
γb0 + A b1

a0
γ ′b1

[H0, γa1] = γ ′a1
[H0, γ

′
a1

] = Za0
a1
γa0. (71)
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Simple calculations show that the functionsṼ b0
a0

from (71) are of the form

Ṽ b0
a0
= V b0

a0
+ za1

2

(
µb0c0

a0a1
Gc0 + λb1

a0a1
Z
b0
b1
+ [Zb0

a1
, A b1

a0
]πb1

)
(72)

with µb0c0
a0a1

andλb1
a0a1

appearing in

[Zc0
a1
,Gd0] = −Za0

a1
C
c0
a0d0
+ µc0b0

d0a1
Gb0 + λb1

d0a1
Z
c0
b1

(73)

andµb0c0
a0a1

antisymmetric in the upper indices, i.e.µb0c0
a0a1
= −µc0b0

a0a1
. Relations (73) can be

inferred by taking the Poisson brackets between (2) andGd0, which leads to(
Za0

a1
C
c0
a0d0
+ [Zc0

a1
,Gd0]

)
Gc0 = 0. (74)

Equation (73) follows directly from (74) and (2). We outline that the functionsC
c0

a0b0

and Ṽ b0
a0

encode the reducible structure within the irreducible theory. The first-class
Hamiltonian (68) is unique up to a combination in terms of the functionsγa0, γa1 andγ ′a1

.
The change ofH0 consequently implies the change of the structure functions from (71).

The extended action describing the new irreducible theory

SE0
[
qi, pi, y

a1, πa1, z
a1
1 , p1a1, z

a1
2 , p2a1, u

a0, ua1, va1
]

=
∫

dt
(
q̇ ipi + ẏa1πa1 + ża1

1 p1a1 + ża1
2 p2a1 −H0− ua0γa0 − ua1γa1

− va1γ ′a1

)
(75)

is invariant under the gauge transformations

δεF = [F, γa0]εa0 + [F, γa1]εa1
1 + [F, γ ′a1

]εa1
2 (76)

δεu
a0 = ε̇a0 − Ṽ a0

b0
εb0 − Ca0

b0c0
ub0εc0 − Za0

a1
ε
a1
2 (77)

δεu
a1 = ε̇a1

1 δεv
a1 = ε̇a1

2 − A a1
a0
εa0 − εa1

1 . (78)

We emphasize that in this way the terms−Za0
a1
ε
a1
2 are restored within the gauge

transformations of the multipliersua0. This is precisely the effect of introducing the
supplementary pairs(za1

1 , p1a1), (z
a1
2 , p2a1) subject to the constraints (66). If in equations

(75)–(78) we discard all the newly introduced canonical pairs, we obtain the extended action
and the gauge transformations from the initial redundant case.

With these elements to hand, it appears clear that we can replace the quantization of the
initial theory by the quantization of the last irreducible system. In what follows we perform
the antifield-BRST quantization with respect to the action (75). To this end, we introduce
the ghosts (

ηa0, η
a1
1 , η

a1
2

)
(79)

and also the antifields(
q∗i , p

∗i , y∗a1
, π∗a1, z∗1a1

, p
∗a1
1 , z∗2a1

, p
∗a1
2 , u∗a0

, u∗a1
, v∗a1

, η∗a0
, η∗1a1

, η∗2a1

)
. (80)

The ghosts have ghost number 1 , the antifields associated with the variables involved with
(75) possess ghost number−1, while the antifields of the ghosts have ghost number -2. The
solution to the master equation is given by

SE = SE0 +
∫

dt
(
q∗i [qi, γa0]ηa0 + p∗i [pi, γa0]ηa0

+ y∗a1

(
A a1
a0
ηa0 + ηa1

1

)− z∗1a1
η
a1
1 + z∗2a1

η
a1
2
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+ u∗a0

(
η̇a0 − Ṽ a0

b0
ηb0 − Ca0

b0c0
ub0ηc0 − Za0

a1
η
a1
2

)
+ u∗a1

η̇
a1
1 + v∗a1

(
η̇
a1
2 − A a1

a0
ηa0 − ηa1

1

)− 1
2η
∗
a0
C
a0

b0c0
ηb0ηc0 + · · ·

)
. (81)

In order to derive a gauge-fixed action, it is necessary to fix the gauge. In this respect, it is
useful to take a gauge-fixing fermion

ψ = ψ[qi, pi, ya1, πa1, z
a1
1 , p1a1, z

a1
2 , p2a1, η

a0, η
a1
1 , η

a1
2 , u

∗
a0
, u∗a1

, v∗a1

]
(82)

implementing some irreducible gauge conditions, with the help of which we eliminate all
the antifields exceptingu∗a0

, u∗a1
, v∗a1

, that are maintained in favour of their fields. The
possibility of building some irreducible gauge conditions is easier on behalf of the newly
added canonical pairs, which at this level play the same role as the auxiliary variables from
the reducible approach. We can put the gauge-fixed action in a form displaying a more
direct link with the Hamiltonian BRST quantization of the irreducible system following the
procedure exposed in [12, 13]. In this light, we declare the variables(ηa0, u∗a0

), (ηa1
1 , u

∗
a1
),

(η
a1
2 , v

∗
a1
) as respectively conjugated in the Poisson bracket

[u∗a0
, ηb0] = −δ b0

a0
[u∗a1

, η
b1
1 ] = −δ b1

a1
[v∗a1

, η
b1
2 ] = −δ b1

a1
(83)

and regard the antifields like the momenta associated with the ghosts. Under these
circumstances, the gauge-fixed action corresponding to (81) reads as

Sψ =
∫

dt
(
q̇ipi + ẏa1πa1 + ża1

1 p1a1 + ża1
2 p2a1 + u∗a0

η̇a0 + u∗a1
η̇
a1
1 + v∗a1

η̇
a1
2 −HB + [ψ,�]

)
(84)

where the BRST charge and BRST-extension of the first-class Hamiltonian respectively start
like

� = γa0η
a0 + γa1η

a1
1 + γ ′a1

η
a1
2 + 1

2u
∗
a0
C
a0

b0c0
ηb0ηc0 + · · · (85)

HB = H0+ u∗a0

(
Ṽ

a0
b0
ηb0 + Za0

a1
η
a1
2

)+ v∗a1

(
A a1
a0
ηa0 + ηa1

1

)+ · · · . (86)

This completes our irreducible procedure in the case of first-stage reducible first-class
Hamiltonian theories. Until now, we showed how a first-stage reducible first-class
Hamiltonian system can be quantized in the framework of the irreducible antifield-BRST
formalism, i.e. without introducing ghosts of ghosts.

4. L-stage reducible Hamiltonian theories

In this section we generalize the results from the first-stage case to higher-order-stage
reducible systems. If the original Hamiltonian theory isL-stage reducible (with finiteL),
the construction of the corresponding irreducible system goes along the same line like that
from the first-stage case. We assume the reducibility relations

Za0
a1
Ga0 = 0, Za0

a1
Za1

a2
= 0, . . . , ZaL−2

aL−1
ZaL−1

aL
= 0 (87)

with ak = 1, . . . ,Mk. Next, we introduce the canonical pairs(yak , πak )k=1,...,L corresponding
to the free indices of the above reducibility relations, and constrain these new variables as

πak ≈ 0. (88)
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Constraints (1) and (88) are first-class and obviously reducible. In a manner similar to that
used in section 2, we derive the first-class constraints

γa0 ≡ Ga0 + A b1
a0
πb1 ≈ 0 (89)

γa2k ≡ Za2k−1
a2k
πa2k−1 + A a2k+1

a2k
πa2k+1 ≈ 0 k = 1, . . . , a (90)

γ a2k
≡ πa2k ≈ 0 k = 1, . . . , a (91)

which are equivalent to (1) and (88). Acting like in the first-stage situation, we find that

πa2k+1 = m b2k
a2k+1

γb2k Ga0 = m b2k
a0
γb2k k = 0, . . . , b (92)

for some appropriate functionsm b2k
a2k+1

andm b2k
a0

, such that the equivalence between (1), (88)
and (89)–(91) is direct. We employed the notations

a =
{ 1

2L for L even

1
2(L− 1) for L odd

(93)

b =
{ 1

2L− 1 for L even

1
2(L− 1) for L odd.

(94)

In (90) the functionsA ak+1
ak depend only on(qi, pi) and possess the property

rank
(
Zak−1

ak
A

ak+1
bk

) = L∑
i=k
(−)k+iMi. (95)

Moreover, theA bk
ak−1

’s can be taken to satisfy the relations

A bk
ak−1
A

ak+1
bk
= 0. (96)

The last relations are based on the fact that we can always choose theA bk
ak−1

’s proportional
with the transposed ofZak−1

bk
’s. On account of (96), one finds that the first-class set (89)–(91)

is irreducible. We remark that the constraint functions from (91) are irreducible. Thus, it
remains to be proved that (89), (90) are so. This can be seen by multiplying (89) byZ

a0
b1

and (90) byZa2k
b2k+1

, which induce

Z
a0
b1
γa0 = Za0

b1
A c1
a0
πc1 Z

a2k
b2k+1

γa2k = Za2k
b2k+1

A a2k+1
a2k

πa2k+1. (97)

With the help of (97) and (96) we infer thatZa0
b1
γa0 = 0, Za2k

b2k+1
γa2k = 0 if and only if

πa2k+1 = A a2k+2
a2k+1

νa2k+2 k = 0, . . . , b (98)

whereνa2k+2 are some functions. Replacing (98) in (89), (90) we obtain

Ga0 ≈ 0 Z
a2k−1
b2k
A a2k
a2k−1

νa2k ≈ 0 (99)

which leads, by virtue of (95)–(96), to

νa2k ≈ A a2k+1
a2k

λa2k+1 (100)

for someλa2k+1. Substituting (100) in (98) we derive the result that (89), (90) are reducible
with the reducibility functionsZa2k

b2k+1
if and only if πa2k+1 ≈ 0. In this situation the

constraints (89), (90) and (91) are simply (1) and (88). Thus, the constraint functions
appearing in (89)–(91) are reducible with the reducibility functionsZ

a2k
b2k+1

if and only if
they have the form (1) and (88). On the other hand, if one multiplies (90) byA

a2k
b2k−1

, one
obtains

A
a2k
b2k−1

γa2k = A a2k
b2k−1

Za2k−1
a2k
πa2k−1 (101)
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due to (96). From (101),A a2k
b2k−1

γa2k = 0 if and only if

πa2k−1 = Za2k−2
a2k−1

µa2k−2 (102)

for someµa2k−2. Inserting (102) in (90) we find

A a2k+1
a2k

Zb2k
a2k+1

µb2k ≈ 0 (103)

which leads to

µb2k ≈ Za2k−1
b2k
σa2k−1 (104)

for someσa2k−1. Introducing (104) in (102) we conclude that (89)–(91) are reducible with
the reducibility functionsA a2k

b2k−1
if and only if they reduce to (1) and (88). In this way, the

irreducibility of (89)–(91) is proved completely.
In the meantime, it is still necessary to add the pairs(z

a2k+1

1 , p1a2k+1), (z
a2k+1

2 , p2a2k+1),
with k = 0, . . . , b. With the help of the last pairs we build the supplementary first-class
constraints

γa2k+1 ≡ πa2k+1 − p1a2k+1 ≈ 0 γ ′a2k+1
≡ p2a2k+1 ≈ 0. (105)

The equivalence between the observables of the original redundant theory and those of the
irreducible system is obtained as in the first-stage situation. We illustrate the proof of the
equivalence in the caseL odd, the other situation being treated in a similar fashion. If
F stands for an observable of the irreducible system, the conditions [F, γ a2k

] ≈ 0 indicate
that it does not depend, at least weakly, onya2k . In the meantime,F should verify

[F, γa2k ] ≈ 0 k = 0, . . . , a. (106)

We start from the last relation (106) (fork = a). On account of (92), we obtain

[F, πaL−2]ZaL−2
aL−1
+ [F, πaL ]A aL

aL−1
≈ 0. (107)

Multiplying the above equation byZaL−1
bL

, on behalf of (95), and asML+1 = 0, we derive

[F, πaL ] ≈ 0 (108)

such that (107) becomes

[F, πaL−2]ZaL−2
aL−1
≈ 0. (109)

Multiplying the next equation from (106) (fork = a − 1) by ZaL−3
bL−2

, we further infer

[F, πaL−2]A aL−2
aL−3

Z
aL−3
bL−2
≈ 0. (110)

With the help of (96), from (110) we deduce

[F, πaL−2] = nbL−1A
bL−1
aL−2

(111)

for some functionsnbL−1. Replacing (111) in (109) it follows that the weak relations
nbL−1A

bL−1
aL−2 Z

aL−2
aL−1 ≈ 0 imply

nbL−1 ≈ ρbLA bL
bL−1

(112)

for someρbL . Inserting (112) in (111) we obtain

[F, πaL−2] ≈ 0 (113)

due to (96). Repeating the same steps on the remaining equations (106) we arrive at

[F, πaL−2k ] ≈ 0 (114)

which lead to

[F,Ga0] ≈ 0. (115)
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Moreover, equations [F, γa2k+1] ≈ 0 and [F, γ ′a2k+1
] ≈ 0 express the fact thatF does not

depend on thez’s. Thus, any observable of the irreducible theory does not involve, at least
weakly, the newly introduced variables, and, in addition, it satisfies (115), which are simply
the equations that should be checked by any observable of the original redundant system,
which show thatF is also an observable of the reducible theory. Conversely, ifF ′ denotes
an observable associated with the reducible system, then it is obviously an observable of
the irreducible theory.

The first-class Hamiltonian with respect to the irreducible first-class constraints (89)–
(91) and (105) can be taken in the form

H ′0 = H ′ +
a∑
k=1

ya2k γa2k +
b∑
k=0

ya2k+1p2a2k+1 +
b∑
k=0

z
a2k+1

2

(
Za2k

a2k+1
γa2k + A a2k+2

a2k+1
γa2k+2

)
(116)

with H ′ given by (54), where we understood the conventionf ak = 0 if k < 0 or k > L. The
first-class Hamiltonian (116) is again unique up to adding a combination in the first-class
constraint functions.

With all these elements to hand, the quantization of the irreducible theory goes from
now on along the standard antifield-BRST rules. The ghost spectrum contains only the
ghost number 1 variables associated with the corresponding constraint functions

ηa0 ↔ γa0 η
a2k
1 ↔ γ a2k

η
a2k
2 ↔ γa2k k = 1, . . . , a (117)

η
a2k+1

1 ↔ γa2k+1 η
a2k+1

2 ↔ γ ′a2k+1
k = 0, . . . , b (118)

while the antifield sector is given by(
q∗i , p

∗i) (
y∗ak , π

∗ak)
k=1,...,L

(
z∗1a2k+1

, p
∗a2k+1

1

)
k=0,...,b

(
z∗2a2k+1

, p
∗a2k+1

2

)
k=0,...,b

(119)

u∗a0
,
(
u∗a2k

, v∗a2k

)
k=1,...,a

(
u∗a2k+1

, v∗a2k+1

)
k=0,...,b

(120)

η∗a0
,
(
η∗1a2k

, η∗2a2k

)
k=1,...,a

(
η∗1a2k+1

, η∗2a2k+1

)
k=0,...,b

. (121)

The antifields(u∗a2k
, v∗a2k

) correspond to the Lagrange multipliers of the constraint functions
γ a2k

, respectively,γa2k , and (u∗a2k+1
, v∗a2k+1

) are associated withγa2k+1, respectively,γ ′a2k+1
.

The variables (119), (120) have ghost number−1, while in (121) only ghost number−2
antifields appear. The gauge-fixing fermion should be taken as depending on the8A’s, on
the ghosts, and also on the antifields of the Lagrange multipliers, where

8A = (qi, pi, yak , πak , za2k+1

1 , p1a2k+1, z
a2k+1

2 , p2a2k+1

)
. (122)

With the help of the gauge-fixing fermion we eliminate all the antifields except the antifields
of the multipliers, and also the Lagrange multipliers. The gauge-fixed action will be
expressed by

Sψ =
∫

dt

(
q̇ipi +

L∑
k=1

ẏakπak +
b∑
k=0

(
ż
a2k+1

1 p1a2k+1 + ża2k+1

2 p2a2k+1

)

+ u∗a0
η̇a0 +

L∑
k=1

(
u∗ak η̇

ak
1 + v∗ak η̇ak2

)−HB + [ψ,�]

)
(123)
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where the BRST charge and the BRST extension of the first-class Hamiltonian (116)
respectively start like

� = γa0η
a0 +

a∑
k=1

(
γ a2k

η
a2k
1 + γa2k η

a2k
2

)+ b∑
k=0

(
γa2k+1η

a2k+1

1 + γ ′a2k+1
η
a2k+1

2

)+ 1

2
u∗a0
C
a0

b0c0
ηb0ηc0

+ 1

2

a∑
j=1

a∑
k=1

a∑
i=1

v∗a2j
C
a2j

b2kc2i
η
b2k
2 η

c2i
2 + · · · (124)

HB = H ′0+ u∗a0

(
Ṽ

a0
b0
ηb0 + Za0

a1
η
a1
2

)
+

a∑
k=1

v∗a2k

(
η
a2k
1 +

a∑
j=1

Ṽ
a2k

b2j
η
b2j

2

+Za2k
a2k+1

η
a2k+1

2 + A a2k
a2k−1

η
a2k−1

2

)
+ v∗a1

(
η
a1
1 + A a1

a0
ηa0 + Za1

a2
η
a2
2

)
+

b∑
k=1

v∗a2k+1

(
η
a2k+1

1 + A a2k+1
a2k

ηa2k + Za2k+1
a2k+2

η
a2k+2

2

)+ · · · . (125)

The functionsC
a2j

b2kc2i
andṼ

a2j

b2k
are those involved with the irreducible gauge algebra arising

in theL-stage reducible case. In this way, we realized the BRST quantization of arbitrary
L-stage reducible first-class Hamiltonian systems in an irreducible manner, i.e. without
introducing ghosts of ghosts. This completes our analysis.

5. Example

Here we exemplify the general theory exposed above in the case of Abelian one- and
two-form gauge fields with Stueckelberg coupling. We start with the Lagrangian action

SL0 [Hµ,Aµν ] = −
∫

d4x
(

1
12F

2
µνρ + 1

4(MAµν − Fµν)2
)

(126)

whereFµν andFµνρ denote the field strengths associated withHµ, respectively,Aµν , and
the notationF 2

µνρ signifiesFµνρFµνρ . (We used a similar notation for the other square.)
The system described by the action (126) possesses the first-class constraints

G
(1)
i ≡ π0i ≈ 0 G(1) ≡ 50 ≈ 0 (127)

G
(2)
i ≡ −2∂lπli +M5i ≈ 0 G(2) ≡ −∂i5i ≈ 0 (128)

and the first-class Hamiltonian

H =
∫

d3x
(−π2

ij − 1
25

2
i + A0iG

(2)
i +H 0G(2) + 1

12F
2
ijk + 1

4(MAij − Fij )2
)
. (129)

In (127)–(129), theπ ’s and 5’s are the canonical momenta associated with the
correspondingA’s andH ’s. The first-class constraints (128) are first-stage reducible:

∂iG
(2)
i +MG(2) = 0 (130)

with the reducibility functions

Za0
a1
= (∂i,M). (131)

The functionsA a1
a0

read

A a1
a0
=
( −∂i
−M

)
(132)
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such thatZa0
a1
A b1
a0
= −(∂i∂i +M2) is invertible. The variables(ya1, πa1) will be denoted

in this case by(ϕ, π). The irreducible first-class constraints are given by (127) and

γ
(2)
i ≡ −2∂lπli +M5i − ∂iπ ≈ 0 γ (2) ≡ −∂i5i −Mπ ≈ 0 (133)

while the first-class HamiltonianH ′ (see equation (54)) reads

H ′ = H +
∫

d3x
(−A0i∂iπ −MH 0π

)
. (134)

We introduce the pairs(ϕ1, π1), (ϕ2, π2), and set the constraints

γ ≡ π − π1 ≈ 0 γ ′ ≡ π2 ≈ 0. (135)

The momentumπ is indeed a combination of the first-class constraints (133):

π = − 1

(∂i∂i +M2)

(
∂iγ

(2)
i +Mγ (2)

)
. (136)

The first-class Hamiltonian with respect to (127), (133) and (135) has the form

H0 = H ′ +
∫

d3x
(−ϕ2(∂

iγ
(2)
i +Mγ (2))− ϕπ2

) ≡ ∫ d3x h0. (137)

The extended action

SE0 =
∫

d4x
(
Ȧ0iπ0i + Ȧijπij + Ḣ 050+ Ḣ i5i + ϕ̇π + ϕ̇1π1

+ ϕ̇2π2− h0− uiG(1)
i − uG(1) − u′γ − viγ (2)i − vγ (2) − v′γ ′

)
(138)

is invariant under the gauge transformations

δεA
0i = εi1 δεH

0 = ε1 δεA
ij = ∂ [iε

j ]
2 δεH

i = ∂iε2+Mεi2 (139)

δεϕ = ∂iεi2−Mε2+ ε̃1 δεϕ1 = −ε̃1 δεϕ2 = ε̃2 δεu = ε̇1, δεu
′ = ˙̃ε1, (140)

δεv
i = ε̇i2− ∂i ε̃2− εi1 δεv = ε̇2+Mε̃2− ε1 δεv

′ = ˙̃ε2+ ∂iεi2−Mε2+ ε̃1 (141)

the gauge variations of all the momenta being identically vanishing. In equations (139)–
(141) the gauge parametersεi1, ε1, εi2, ε2, ε̃1 and ε̃2 are respectively associated with the
constraint functionsG(1)

i , G(1), γ (2)i , γ (2), γ and γ ′. From equations (139)–(141) we
can derive the Lagrangian gauge transformations associated with the irreducible theory
(including, of course, the gauge transformations of the original fields). In view of this
we should consider a model of irreducible Hamiltonian theory. In this light we assume
that (127) and the former constraint in (135) are primary, while (133) and the latter constraint
from (135) are secondary. Passing from the extended action (138) to the corresponding total
one (obtained by takingvi = 0, v = 0 andv′ = 0 in (138)) we derive its gauge invariances
in the standard manner. Indeed, the equationsvi = 0, v = 0 andv′ = 0 imply δεvi = 0,
δεv = 0 andδεv′ = 0. The last three equations lead via (141) to

εi1 = ε̇i2− ∂i ε̃2 ε1 = ε̇2+Mε̃2 ε̃1 = −˙̃ε2− ∂iεi2+Mε2. (142)

Replacingεi1, ε1 and ε̃1 from (142) in (139)–(140) we obtain

δεA
0i = ε̇i2− ∂i ε̃2 δεH

0 = ε̇2+Mε̃2 δεA
ij = ∂ [iε

j ]
2 δεH

i = ∂iε2+Mεi2
(143)

δεϕ = −˙̃ε2 δεϕ1 = ˙̃ε2+ ∂iεi2−Mε2 δεϕ2 = ε̃2 (144)

δεu = ε̈2+M ˙̃ε2 δεu
′ = −¨̃ε2− ∂i ε̇i2+Mε̇2. (145)
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The Lagrangian action corresponding to the above total action coincides with the original
one, and its gauge transformations, which derive from (143), (144), read

δεA
µν = ∂µεν − ∂νεµ δεH

µ = ∂µε +Mεµ δεϕ1 = ∂µεµ −Mε. (146)

The gauge transformations forϕ andϕ2 were omitted as these fields play the role of Lagrange
multipliers (see equation (137)) and are not relevant in the Lagrangian context. In order to
write down (146) we employed the notation

εµ = (ε̃2, ε
i
2

)
ε = ε2. (147)

As a consequence, our formalism reproduces the original gauge transformations via (139)–
(141) and outputs some new gauge transformations (forϕ1) that also make the gauge
transformation set (146) irreducible at the Lagrangian level. The Lorentz covariance of
the gauge transformations (146) is due to the introduction in the theory of the pairs(ϕ1, π1)

and(ϕ2, π2).
In what follows we approach the antifield BRST treatment of (138). Straightforward

calculation then yield the solution to the master equation

SE = SE0 +
∫

d4x
(
A∗0iη

i
1+H ∗0η1+ A∗ij ∂ [iη

j ]
2 +H ∗i

(
∂iη2+Mηi2

)
+ϕ∗(∂iηi2−Mη2+ η̃1

)− ϕ∗1η̃1+ ϕ∗2η̃2+ u∗i η̇i1+ u∗η̇1+ u′∗ ˙̃η1

+ v∗i
(
η̇i2− ∂i η̃2− ηi1

)+ v∗(η̇2+Mη̃2− η1
)

+ v′∗( ˙̃η2+ ∂iηi2−Mη2+ η̃1
))
. (148)

All the ghosts from (148) have ghost number 1, and all the antifields ghost number−1. We
take the gauge fixing fermion

ψ =
∫

d4x
(
u∗i (∂jA

ji +MHi + ∂iϕ1)+ u∗(∂iH i −Mϕ1)− u′∗(∂jAj0+MH 0)
)

(149)

which implements the irreducible gauge conditions∂jA
ji+MHi+∂iϕ1 = 0, ∂iH i−Mϕ1 =

0, and∂jAj0+MH 0 = 0. After some computation we are led to the gauge-fixed action

SEψ = SL0 +
∫

d4x
(
Bµ(∂νA

νµ +MHµ + ∂µϕ1)+ b(∂νHν −Mϕ1)+

+ u∗µ(�+M2)η
µ

2 + u∗(�+M2)η2
)

(150)

such that the resulting path integral is given by

Zψ =
∫
DAνµ DHµ DBµ Db Dϕ1 Du∗µ Dη

µ

2 Du∗ Dη2 exp iSEψ . (151)

In (150), (151) we employed the identifications

Bµ = (π1, π0i ) b = 50 u∗µ = (−u′∗, u∗j ) η
µ

2 = (η̃2, η
j

2). (152)

One can check that there are no residual gauge invariances in the action (150). Moreover,
the gauge-fixed action (150) is Lorentz covariant. This is due precisely to the introduction
in the theory of the pairs(ϕ1, π1) and(ϕ2, π2) subject to the constraints (135).

While the gauge-fixing fermion (149) is useful in obtaining the covariant path
integral (151), the fermion

ψ ′ =
∫

d4x
(
u∗i (∂jA

ji − Ȧ0i + ∂iϕ1)+ u∗(∂iH i − Ḣ 0)− u′∗(∂jAj0− ϕ̇1)
)

(153)



Quantization of reducible constrained Hamiltonian systems 8821

is appropriate in order to make the reduction to the physical degrees of freedom in the path
integral. Starting with the solution (148) and relying on the gauge-fixing fermion (153),
after some computation, we find the path integral over physical degrees of freedom for the
model under consideration of the form

Zψ ′ =
∫
DAij Dπij DHi D5i Dϕ1 Dπ1 δ(∂

jπji + ∂iπ1)

× δ(∂jAji + ∂iϕ1)δ(∂
i5i)δ(∂iH

i) exp iSψ ′ (154)

whereSψ ′ is given by

Sψ ′ =
∫

d4x
(
Ȧijπij + Ḣ i5i + π2

ij + 1
25

2
i − 1

12F
2
ijk − 1

4(MAij − Fij )2
)
. (155)

The delta functions from the constraint functions and their gauge conditions in the path
integral (154) show that the independent fields and momenta are precisely the transverse
components ofHi and 5i and also the longitudinal components ofAij and πij . It is
clear that the conditions∂i5i = 0 and ∂iH i = 0 restrict the integration only over the
two transverse degrees of freedom for the vector fields and their momenta (typically for
electromagnetism). Related to the remaining conditions from the measure of (154), it can
be shown that they enforce the longitudinal parts as independent components of the tensor
fields and their momenta. Indeed,Aij and πij can be decomposed into longitudinal and
transverse components

Aij = ∂iAT
j − ∂jAT

i + εijk∂kAL πij = ∂iπT
j − ∂jπT

i + εijk∂kπL (156)

where the transverse components satisfy∂iAT
i = 0 and ∂iπT

i = 0. Then, via (156) the
conditions∂jAji + ∂iϕ1 = 0 and∂jπji + ∂iπ1 = 0 imply that

∂i∂iA
T
j + ∂jϕ1 = 0 ∂i∂iπ

T
j + ∂jπ1 = 0 (157)

and hence

AT
j = −

∂j

4ϕ1 πT
j = −

∂j

4π1. (158)

On the other hand, from (157) it follows that∂i∂iϕ1 = 0 and∂i∂iπ1 = 0, which then yield
ϕ1 = 0, π1 = 0 by virtue of the boundary conditions for the unphysical degrees of freedom
(ϕ1, π1) (vacuum to vacuum). Inserting the last relations back in (158) we find that the
conditions checked by the tensor fields and their momenta lead toAT

j = 0 andπT
j = 0, so

the only physical degrees of freedom are described by the longitudinal pair(AL, πL). In
this way the conditions implemented in the measure of (154) lead to transverse degrees of
freedom for the vector fields, respectively to a longitudinal one for the tensor fields, like in
the reducible approach. This completes the analysis of the investigated model.

6. Conclusion

In conclusion, we succeeded in giving a systematic irreducible procedure for quantizing
reducible first-class Hamiltonian systems according to the antifield BRST method. This
new result was inferred by means of constructing an irreducible first-class Hamiltonian
theory in a larger phase space which remains physically equivalent to the original redundant
one. The above equivalence makes the replacement of the quantization of the reducible
theory by that of the irreducible system legitimate. As a consequence of our irreducible
approach, the ghosts of ghosts, their antifields, as well as the pyramidal structure of auxiliary
fields are no longer necessary. We further illustrate in detail the theoretical part of the paper
in the case of the Stueckelberg coupled Abelian one- and two-form gauge fields.
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